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Abstract

Among the many estimates available for the probability density function, the kernel tvpe estimates are quite

popular. Jackknife technique is used to reduce bias of these estimates. It is shown that the jackknife estimate has

the same properties as the original estimates for certain well-behaved kerncis. A Berry-Essen type central limit'

theorem is also given for these estimates.

1. Introduction

Jackknifing techniques are increasingly being ap­

plied to data analysis for bias reduction. They are used

in many statistical contexts, such as robust. estimation

and density estimation. Often the asymptotic properties

of jackknifed estimates turn out to be the same as the

original estimates. Also, jackknifing is related to Efron's

bootstrap technique which has found applications in

many statistical settings. Kernel type estimates of the

probability density functions have been studied by
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several authors. Bias reduction in kernel density es­

timate has been studied through combination of es­

timates bySchucany and Sommers (1977) using different

density estimates' in such a case may become negative.

Using jackknifing technique on the kernel density

estimates we can reduce the bias of the estimates. In this

paper, we de.fine pseudovalues for kernel density es­

timates and study the jackknife properties of their jack­

knife estimates. It is shown that the jackknifed estimates

have the same asymptotic properties as the original es­

timates for certain well-behaved kernels. A Berry-Es­

'seen type central limit theorem is also given for the

jackknifed estimates.

Application of jackknife technique has been made

to the hazard function estimates for bias reduction in a

paper by the authors (1989). The technique has also
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been applied to data on tumors in breast cancer, Rustagi

and Dynin (1989).

2. Pseudovalues

Let Xl,X2,...,Xnbe a random sample from a popula­

tion with cumulative. distribution function F (x) and .

probability density function f (x). Let K(x) be a given

kernel function withthe following properties:

(i) sup I K(x) I < 00

(

(ii) I K (x) dx 1

)

(iii) lim Ix K (x) I = 0

x - > 00

(00

(iv) I i K (x) dx = 0, i = 1,2,.., r-1,

) -00

(00

I ~K(x)dx ~ 0,

) - 00

(00

and II~K(x) I dx < 00

) -00

Let Fn(x) be the empirical distribution function

based on the random sample, and let {hn}be a sequence

of constants. Then the kernel density estimates of f(x),

are given by Rosenblatt (1956) and Parzen (1962)

1 n X-Xi 1 (00 x-y

fnhn (x) = - I K(-) = I K (-) dFn(y)

nhn i = 1 hn hnJ - 00 hn

(2.1)

Note that

1 ( x-y

E [fnhn (x)] = -I K(-) dF (y) with

hn) hn

2
o

E [fnhn (x)] -- > f(x) as n-- > 00 and hn -- > O. That is

the kernel estimate is asymptotically unbiased.

The variance of fnhn (x) also approaches zero if in

addition we assume that n hn -- > 00, see for example,

Tapia and Thompson (1978).

Let Fn,i(X) be the empirical distribution function of

the random sample Xj,...,Xn with the observation Xi

removed,

Supposed we denote by

1 ,( x-y

f/lhn-l (x) = - I K(-) dFn,i(Y) (2.2)

hn-I] he-i

where he-rare constants based on n-1 observations. The

notation hn-l does not mean that it is the previous value

to hn. rather hn,hn-l are functions of n.

We define the pseudovalues as follows:

hn-
r hn_t"r

f/(x) = fnhn (x) - ---fni-lhn_l (x)

hn-r_hn_(r hn-r-hn_l-r

(2.3)

The jackknifed estimated of the probability density func­

tion is then defined by b given by,
,l

1

b (x) = - I fsi(x) = 'Y fnhn (x) + (l-'Y) fn-lhn-l(X)

n (2.4)

hn-r

where 'Y =--­
hn-r _hn_l-r

and fn-lhn-l(X) is the average of the quantity defined in

(2.2)

That is, the jackkn..'; estimate is convex linear function

of the classical estimate based on n observations and an

average of estimates based on n-I observations. The

generalized jackknife estimate given by Schucany and

Sommers (1977) for the density is linear combination of

.'.:J,

•

.,'



•

•

•

the density estimates based on two different kernels, KI

and K2. Ifwe assume, KI, = K2 =K, their estimate (3.2)

p. 421) reduces to.the above estimate with appropriate

adjustment of the bandwith, hn.

3. Properties of Jackknifed Estimates of the Density

Bias reduction in the estimates of the density by

using not necessarily positive kernels, has been

demonstrated by several authors. .For sufficiently

smooth probability density functions, it is alwayspossible

to reduce, the bias by choosing an appropriate kernel K.

Among the class of non-negative K's A(iv) can be

achieved only for r = 2, giving n4/5 as the best possible,

error rate. For better results, one has to also include

those k's for which K(y) is negative, leading to a negative

estimate of probability density function for some nand

hn and at some point x.

From now on, we shall assume that kernel K statis­

fies the following additional properties:

(v) The rth derivative of density function satisfies a

Lipschitz condition,

I t<r) (x)_t<r) (y) I< c I x-y I a, 0 ~ a s 1

for all x and y,

(

(vi) I I ~+aK(x) I dx < 00, and

J

(vii) {hn} is a sequence of constants such that

hn

- = 1 + 0(1), hn --> 0, nhn --> 00.

hn-l

The following result gives the form of bias of the estimate

(2.1).

Theorem 3.1 Under the conditions (i) - (vi),.,

(00

(i) Bias [fnhn (x)] = h/t<O) (x) ItK(-z)d7lr!

J'"""oo
+ 0 (hn

r + a) (3.1)

(ii) Bias (fr) = 0 (hn_(l (hn- hn.l)h/·
l

(hn_Ir - hnll

[max(hn,hn.I)]1+a (3.2)

Further, if (vii) holds, Bias (6) = O(hn
r+ a).

Proof: (3.1) is well known. For (3.2), we note that

E(fn.lhn~l i(x)] = f (x) +

( ( (z_u)r.2

hn_{-l I K(-z) I t<r.l) (X+hn.IU)dudz

J J (r-2)!

by using Taylor's expansion. Hence

:( (z (z_u)r.2

BiasIrfx) = I K(-z) I __ [ahnr.lf(r.l)(x-t-hnu)·

J J0 (r-2)!

-' (1- a) hn.{·l t<r-l) (x + hn.IU)] dudz

( fZ (Z_IL)r.2

= I K(-z) I -- ahnr.l[t<r.l)(x + hnu) - t<r.l)

J .Jo (r-2)!

(x+ hn-IU)]

+ [ah/·l- (l-a)hn_{·I] t<r-l) (x + hn.IU)}dzdu

= A + B, say

(00 (z (Z_IL)r.2 (x+hnu

Now A =1 K(-'z) I -- (qhnr.l) I rev) dvdudz

J - 00 Jo (r-2)! J~+hn.lu

and we Olaywrite '

f.x+hnu t+ hnu

t<r) (vjdv = I ([t<r) (v)-t<r)(X)] +

Jx+hn-Iu Jx+hn-Iu'

fer) (x)} dv

= C + D,say
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J -00

We have here,

1 (00

I CIs; - (hn-t-hn)l K(-z) I zr I sup I t<r)

rl J ,.... 00

(v)_t<r) (x) I dz

where supremum is taken for

I v-x I s max (hn,hn-t I z I ), so that

hn-t-hn

I C I = [ hnr-thn_{-t (max(hn, hn_t»t +a]

hn_t r-h/

= 0 (h/+ a) if (vii) is satisfied.

Similarly for Band D. Hence the theorem follows.

The following theorem provides the connection be­

tween the bias of jackknife estimate and that of the ker­

nel estimate and is stated here without proof.

Theorem 3.2 Under the conditions (i) - (iv), and

(

II x Ir+ 11 K(x) I dx < 00 for any Lebesque

J
point oft<r+I).

hn-trh/(hn-hn-I) f
Bias (Ij) = f(x) (r+t) I K(-z)~+Idz.

(hn_I r - h/) (r + 1)! J
Further, if (vii) is satisfied and K is differentiable, then

Bias (fJ) - Bias (fnh)

with kernel Ko = [zK' (z) + (r + 1) k(z)V!' provided that

Ko is square integrable.

Collorary: If K is symmetric on the interval (-a, a) (r

even), f I x I r+2 K (x) dx < 00 and x is Lebesque point

for f(r+2) (x), then

hn-{h nr(hn-hn-l)

bias «» =' - t<r+"2) (x) K(-z) ~+2

(hn_{-h/)(r +2)!

Now we obtain expression for the variance of the jack­

knife estimate,

4

Variance of fJ(x),

Let a/ denote the variance of fJ(x). Then

x-Y x·Y

a/ = n-I(hn-r-hn_t"rr2 Var{hn·r-IK(-) -hn_I-r-IK(-)}

hn hn-l

= A- B, say

where

( x-Y x-Y

A = n-l(h n-
r - hn_I-

rr2 I hn·r-IK(-)-hn_I-r-IK(-)f

J hn hri-I

f(y)dy

( x-Y x-Y

B -l(h -r h -l.r) 2{ I [h .r-IK( ) h -r-t '= n n - n - n - - n-I K(=)]

J hn hn-i

f(y) dy}2

Notice that with z = (x-y)hn-t, we have

( 00 hn hn

A =n-\hn-r_hn.t"rr2hn-2r.I I [K(z) - (_)r+ IK(z_')f
J - 00 hn-t hn-t

f(x-zhn)dz

hn

= (nhnrl (hn-r-hn_I-')-2hn-2r(1- _)2

hn-I

K(z) - K(z-') K(z-)

( 00 hn-l hn-I hn

I {[ ]---- [(=)r+I_1]}2 f(x-zhn)dz.

hn hn-l

1--

hn-I

hn

In the limit when - "-> 1,h hn -- > 00, hn -- > 0 as

hn-l

•
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(3.4)

then MSE fJ is approximately equal to MSE fnhn with

kernel kOI3 with

K(Z)-l3r+1K(I3Z)

Kol3 = . (3.3)

Remarks:

(i) For the kernel K = 1, 0 s x s 1, the minimizing

parameter 13 is givenby some root of

133 - 4132 + 13 - 1 = O.

For the kernel K = e", x ~ 0, the minimizing parameter

exists.

Proof: If f K(_z)zr+ 1dz ;e 0 and f+1(x) ¢ 0, then

f(x) r
min min MSEfJ = min min[- I KoI32(z)dz +

hn 13 hn 13 nhnJ

1-l3r

Observe that if hn/hn-l -- > 13 = 1, then Kol3 -- Ko.

Theorem 3.3. Let fnhnKol3 be a kernel densityestimate

with kernel Kol3 as defined in (3.3). Then

min min MSEfJ = min min MSEfJ.
hn hn-1

13=1

(ii) If hnislarger than the optimalhnfor minimizing MSE

of fnhn, K613, then we can find another sequence of con­

stants h'nsuch that

MSE (fJ)/MSE fnhn Kol3 ---> 0

as n -- > 00. Note that fJiscomputed'with the help of hn

and h'n.

(iii) Note that the jackknifeestimate isnot asymptotical­

lya kernel estimate except when

lim hnlhn-l

hn 13

. When n -- > 00, (3.4) equals min min MSE fnhn,.Kob ap-
proximately. 13 hn :

n-- > 00

on X,

n

r
I [K(z) - I3r+ 1K(zl3)]2dz.

J
We see that if lim hn/hn-1 existsand does not depend

n -- > 00, we have

Therefore, as n-- > 00, we have

f(x) roo {zk'(z) + (r + 1)iqz)}2dz 1

ai = ----- I + 0 (-)

nh/ J - 00 r n hn

Notice that orf >Osince[zK~(z)+ (r+1)K(z)] >0

for all integrable functionsK'(z). IfzK' (z) + (r + 1)K(z)

= 0, then K(z) = z-(r+1)which is not integrable.

hn f(x)

If-__ > 13, n -- > 00,13 ¢ 1, then ai =---
hn-1 nhn(1-l3r)2

f(x) roo
lim (n h-A) = - I {zK'(z) + K(z)(r+1)}2dz

n-- > 00 r2 J - 00

f(x) r 00 1

so that A =-'- I (zK' (z) + K(z) (r + 1)2dz + 0 (-),

n hnr2 J - 00 n hn

where we used the conditions that f [zk' (z)]2dz < 00

and

roo
I K2(z) = 0(m-2)

Jm
Using results of theorem (3.2) we get

1

B = - [f(x)] + 0 (hn
r +o}

•

•
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t<r+l)(X) (

hn
2r+ l I [K(_z):t+ ldz)2)]

. (r+1)! J

2r+2 2r

2r+3 2r+3

(ii) (2 + 8)~th power of Kl is integrable for some> 0

we can find Berry-Essen bound for g(y) where

6(x) - E[tj(x)]

g(y) = P{ :5 y}-<I>(Y),

VVar tj(x)

<I> (y) is the distribution function of the standard normal

random variable. We use the following notation:

•

1-~ (
min [__']2/(2r+3) [f(x) I Ko~2 dz](2r+2)/(2r+3)

~ b (l-br) J

=n (2r + 3) (2r + 2) n

ci = n-2 k E{Kl(X-Xi) - E[Kl(X-Xi)]2

i =1

.n

!J.2+8 = n-208 k E I Kl(X-Xi) - E[Kl(X-Xi)] I 2+8 •
t<r+l)(x) (

[ I K(-z) r+ ldz]2/(2r+3).

(r + I)! J
Minimization of f Ko~2(z)dz with respect to ~ occurs for

~ = O. The right hand side becomes

min min MSE fnhn Ko~

~ hn

Hence the variance of 6 is minimized for ~ = O.

18. Berry-Esseen bounds foil' Jackknife Estimates

The jackknife estimate of the probability density

function is the sum of n independent but not necessarily

identically distributed random variables. Using the

function ki. defined below the estimate isgiven by

1 n

fJ(x) = - k Kl(X-Xi) (4.1)
/

n i =1

where

z z

. Kl(Z) = (hn-
r - hn_t"~-l[hn-rK(-) - hnol-r-l K(-)].

hn hnol

Assuming that

(i) Kl is square integrable, and

6

i =1

The Berry-Esseen bound isgiven by

!J.2+d

sup I g(y) I s Co-
2+8

- 00 Y00 (J (4.2)

where Co is the universal constant, for reference, see

Loeve (1955). This result provides also the asymptotic

normality for the jackknife estimate if

!J.2+8

---- > 0 as n -- > 00. The main result is stated
2+8

(J

in the following theorem.

Theorem 18.J1.

Let assumptions (i) - (vii) be satisfied. Further,

some 8 > 0, assume that

(

. (a) I I z 12+8 K'(z) 2+8 dz < 00,,
J

(00 1

(b) I I K2+8 dz = ot--) as m -- > 00,

. J m m2+8

•
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(c) I K2(z)dz= 0(-) as m -- > 00,

Jm m
2

(d) f(x) is continuous at X,

hn+l

(e)hn--> O,nhll--> 00,and--->'1asn-- >00

hn

Then there exists a universal constant c5 such that

[f](x)-E[b(x) ) ]

sup I { s y} <I> - (y) I s
- 00 < y < 00 V Var fj(x)

22+5 f I zK'(z) + (r + 1) K (z) 1
2+5 dz

c5------'-----------

[nh-,f(x)}M f [zK'(z) + (r+ 1)(K(z)2)dz]M+l

The proof of the theorem follows from that of Loeve

(1955) p. 55.
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